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I INTRODUCTION AND SUMMARY

The high-latitude ionospheric irregularity structure that manifests

itself in a variety of scintillation effects has been studied for many

years. To define an equatorward boundary for the high-latitude scintil-

lation region, Aarons et al. (1969) used the point where the amplitude

scintillation index SI, measured at 54 MHz, first exceeds 50%. The global

trace of this point is referred to as the high-latitude scintillation

boundary. Poleward of the scintillation boundary, highly variable but

generally enhanced radio-wave scintillation occurs.

Aarons (1973) has summarized the high-latitude scintillation

morphology as deduced from a large and varied but consistently processed

database. The scintillation boundary has an oval form about the geo-

matnetic pole, as does the auroral oval which identifies the average

location of discrete auroral arcs. The scintillation boundary, however,

is generally displaced several degrees equatorward of the auroral oval

at night.

More recent observations have begun to show the detailed structure

of the auroral-zone scintillation and its association with other auroral

phenomena (Buchau et al., 1978; Martin and Aarons, 1977; Basu, 1975).

In addition, the high-latitude irregularity structure has been sampled

in situ (Sagalyn et al., 1974; Phelps and Sagalyn, 1976; Ahmed and

Sagalyn, 1978). These analyses show that the high-latitude magnetospheric

topology is consistent with the scintillation morphology in that the

nighttime irregularity boundary, which has been associated with the

equatorward edge of the soft central-plasma-sheet precipitation that

causes the diffuse aurora, coincides with the scintillation boundary.

Intense localized dayside scintillation has been associated with the cusp

region. Localized nighttime scintillation enhancements within the scin-

tillation boundary have been associated with active auroral arcs. This

list, however, is by no means exhaustive; moreover, the work of identify-

ing causal mechanisms has just begun.
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In this report, we shall describe the morphology of the high-latitude

scintillation observations made at Poker Flat, Alaska, using the Defense

Nuclear Agency Wideband satellite. A detailed description of the experi-

ment can be found in Fremouw et al., 1978. The satellite was launched

on May 22, 1976, into a sun-synchronous polar orbit. Data were recorded

at Poker Flat, Alaska, on a regular schedule for two years. After the

two years of continuous operation, several intensive but comparatively

short data-gathering campaigns were conducted.

The station at Poker Flat, Alaska is located at 65'7'N latitude,

140'3'W longitude, at a dip latitude of 65.4'N. During moderately dis-

turbed auroral conditions, the midnight sector of the auroral oval passes

over Poker Flat. The station is thus ideally located for measuring scin-

tillation phenomena associated with the nighttime auroral oval.

The Wideband satellite orbit is such that southward-bound high-

elevation passes occur at Poker Flat approximately at local midnight

(1000 UT). Passes of progressively lower maximum-elevation angles occur

before midnight to the east and after midnight to the west. The passes

follow a trajectory nearly parallel to the geomagnetic meridian plane

over Alaska. Figure I shows the 350-ki ionospheric penetration paths

for high-elevation day and night passes against an outline of the state

of Alaska.

High-elevation d-ytime passes occur appr)ximately nine hours after

the corresponding nighttime passes because of the orbital inclination.

They progress from the southeast to the northwest as shown in Figure 1.

Because of the operating schedule, however, 30/ fewer daytime passes

than nighttime passes were recorded. The database is described in

detail in Section II.

Before sumarizing the principal results of the morphological study,

it is useful to describe the detailed structure of a few representative

individual passes. In Figure 2 we show a moderately disturbed evening

pass recorded on 28 MIay 1976 (the first pass recorded). The scintilla-

tion indices are shown, plotted against Universal Time (UT). The Briggs-

Parkin angle--the angle between the magnetic field direction and the

6



~TRACK FOR

DAYTIME PASS
160, (south to north)

70' 10

FIGURE 1 IONOSPHERIC PENETRATION POINT AT 350 km FOR TYPICAL
HIGH-ELEVATION PASSES AT POKER FLAT

propagation vector--and tile dip latitude at a 350-ki reference altitude

are also shown. The minimum Briggs-Parkin angle is marked on all of the

displays. Because of the near meridional trajectory of the nighttime

passes, this minimum occurs where the propagation vector lies within the

L-shell. In the nighttime data, scintillation enhancements are almost

certain to occur at this point.

A substorm onset--as indicated by an abrupt development of a negative

hay on the College, Alaska, magnetometer--occurred during the pass. The

phase-scintillation enhancement at 0954 UT is likely to be associated

7
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FIGURE 2 LATITUDINAL DISTRIBUTION OF AMPLITUDE AND PHASE SCINTILLATION
FOR MODERATELY DISTURBED PASS

with the westward traveling surge 4enerated by the substorm (local mid-

night at College occurs at 1000 UT). The region of enhanced phase scin-

tillation between 0952 and 0955 is associated with a narrow region of

enhanced energetic particle precipitation, as indicated by the correspond-

ing total electron content data (not shown). The poleward scintillation

boundary present in this particular pass, however, is not a common feature

in the Poker Flat data.

A more typical pattern for moderately disturbed conditions is shown

in Figure 3. Here an intense, localized, phase and amplitude scintilla-

tion enhancement is present well to the north of the station. The College

magnetometer shows a positive bay, indicating that the substorm activit'
is well to the north of the station, although the poleward feature is

most likely substorm related. In the center of the pass there is a broad

region of enhanced phase scintillation.
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FIGURE 3 LATITUDINAL DISTRIBUTION OF AMPLITUDE AND PHASE SCINTILLATION
SHOWING LOCALIZED PERTURBATION WELL TO THE NORTH OF POKER

FLAT

In Figure 4, we show the typical pattern for sustained low-to-

moderately-active conditions, when the substorm activity remains well to

the north of the station. We believe that the narrow enhancement at the

beginning of the pass is associated with the substorm activity. The most

conspicuous feature, however, is a narrow phase-and-amplitude scintilla-

tion enhancement just at the point where the Briggs-Parkin angle mini-

mizes. This feature has been attributed to a geometrical enhancement

caused by sheet-like irregularity structures (Rino et al., 1978). The

prominence of this scintillation feature was noted early in the Wideband

data analysis (Fremouw et al., 1978).

The nighttime data show a general two-component structure. One com-

ponent consists of narrow, highly variable scintillation enhancements

that are almost certainly associated with active discrete aurora. A

broader, more stable equatorward region of enhanced scintillation is

associated with the diffuse aurora. Within the diffuse aurora there is
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FIGURE 4 TYPICAL LATITUDINAL DISTRIBUTION OF AMPLITUDE AND PHASE
SCINTILLATION SHOWING LOCALIZED ENHANCEMENT WHERE THE

LINE-OF-SIGHT LIES WITHIN AN L-SHELL

a localized amplitude and phase scintillation enhancement that occurs

whenever the propagation path is coincident with an L-shell.

These findings are in agreement with the aircraft observations of

BhLchau et al. (1978), who had good supporting optical data. They identi-

fied five regions, namely: the trough (I), diffuse aurora (III), and

polar cap (V), with regions II and IV corresponding to the equatorward

and poleward boundaries of the diffuse aurora, respectively.

The geometrical enhancement is most pronounced when it occurs near

the edge of the diffuse aurora where a source region has been identified

(Rino et al., 1978). This is evidently the Region-ll enhancement observed

by huchau et al. (1978). The poleward boundary (Region IV) is where

active arcs are most likely to occur. It should be noted that quiet

auroral arcs produce enhanced phase scintillation but very little amplitude

10
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scintillation (Buchau et al., 1978). The Poker Flat station is generally

too far south for polar cap observations.

Daytime (morning) scintillation generally shows much broader regions

of enhanced scintillation than do nighttime passes. Indeed, the most

intense sustained-scintillation conditions occur during the daytime. An

example is shown in Figure 5. There is no evidence of sheet-like struc-

tures in the daytime data, although localized (but randomly located)

enhancements do occur.

The results that follow are based on the first two years of Wideband

data collected at Poker Flat. The database and general data processing

are described in Section II. In Section III we examine the general oc-

currence of activity. Scintillation is not it all uniformly distributed

in the auroral zone. It was more frequent during the second year, in a

period of increasing solar activity. Also, while there were months that

were much more active than others, there is no evidence of seasonal con-

trol. By comparing general trends in scintillation activity and magnetic

activity, we will see that, although the relationship is not simple,

there is a good correlation between the two. This holds true for both

night and daytime scintillation, which are quite different in nature.

Synoptic variations in scintillation are discussed in Section IV.

The latitudinal distribution of activity shows that the most distinct

feature in all of the auroral Wideband data is a pronounced enhancement

of scintillation near the L shell, which is attributed to the formation

at lliuJht Of shect -like i rrCgu lari ties. In some of the nighttime data,

there1, is al[so evidence for an anomalous enlhancement of activity far to

Lhe south. The latitudinal distribution of night and daytime activity

is very dif erent. A comparison of pre- and lpost-midnig'ht pa s ses shows,

how ever, only minor difl Frences. The tatitudinal di ihk1ti t ionl ot scin-

iL at ion activity, when organized by magnetic acLivit. I \.e', .Shows

good agr',e'CenCtiL bLwe''en the occurrence( of scintillation nd the l ' I

'Iagnht ict is turbaice.

II
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FIGURE 5 LATITUDINAL DISTRIBUTION OF AMPLITUDE AND PHASE SCINTILLATION

FOR DISTURBED DAYTIME PASS

Finally, in Section V, we compare the Wideband data with the pre-

dictions for intensity scintillation at a given level of turbulence by

the phase-screen model of scintillation, in order to isolate the purely

geometrical factors.

12

.344'0;



II DATABASE

Routine data processing includes, as a first step, filtering out

deterministic changes in the received signal, mainly power variations

caused by changing range and slow-phase trends. A 0.1-Hz cutoff fre-

quency is first used to remove the trend-like variations in the data.

The scintillation data are then characterized by moments computed over

20-s intervals. These include the measured rms phase, a , and the in-
2 201/2

tensity scintillation index, S4, where S4 = ((I2 - /I)i/2/(I) and I

is the signal intensity. The S4 index ranges from zero, for an undis-

turbed signal, to an upper limit near unity under conditions of strong

scattering. System and sky noise place an effective lower limit on S4

of about 0.02. The rms phase varies from a noise-controlled lower limit

of about 0.1 rad to a virtually unlimited upper bound. The measured

value of the rms phase is, however, controlled by the detrend filter

cutoff, and no significance should be attached to its absolute value.

During the first two years of the experiment, the operating schedule

called for recording nighttime passes three times per week and daytime

passes once per week. As the Poker Flat station was the first remote

field site in operation, and is also unique in some other aspects, it

initially suffered a variety of equipment problems. Some of these prob-

lems continued to degrade certain types of data for several months. As

a result, there exist some gaps in the data for the first year, and care-

ful editing was necessary, with an eye toward retaining as large a sample

as possible. The net result, however, is an excellent database covering

the time from May 1976 until April 1978. In 1976-1977, a total of 284

complete or partial passes were retained, and 449 passes were collected

in 1977-1978. Changes in data-collection technique make for some dif-

ferences in the database over time, for example in the latitudinal

coverage, and these will be pointed out.

13
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Typically, two or three satellite passes would be recorded during

each of the scheduled night and day operating times. Sometimes, more

intensive data-taking was scheduled for coordinated experiments near the

equinoxes. Passes of less than 300 maximum elevation were routinely

ignored, and generally the first and last 10' of elevation were masked

out to avoid multipath effects.

14



III OVERALL S4 AND a STATISTICS

Figures 6 and 7 give a broad overview of the first two years of the

Wideband experiment. The passes were grouped into two bins per month,

in order to provide valid statistical samples, without obscuring short-

term variations. Figure 6 displays the data taken between May 1976 and

April 1977; Figure 7 is for the same period in 1977-1978. Each figure

gives separately a graph of S exceedence statistics, a exceedence
40

statistics, and an average of the three-hour K magnetic index as recorded

at nearby College, Alaska.

Exceedence statistics are derived as follows: Five levels of S
4

and a have been selected; S = 0.2, 0.4, 0.6, 0.8, and 1.0, and a =
40

1, 2, 3, 4, and 5. The ordinate which is labeled Percent Occurrence

indicates the percentage of the observation time that the ordinate value

was exceeded. For instance, in the first half of June 1976, the 0.2

value of S4 was exceeded about 35% of the time, the 0.4 value about 9%

of the time, and the a value of 1 was found to be exceeded about 20% of

the observation time. The numbers at the top of each bin indicate the

ntmlQb rs of passes and the number of 20-s data samples that form that

particular measurement.

Between the plots marked Average College K and the a histograms,
¢4

the number of passes contained in each bin and the total number of 20-s

data points are indicated. For the sake of completeness, all of the

edited data has been displayed, and so care should be taken in interpret-

ing the activity of bins containing relatively little data. For example,

only two passes were saved from the first half of October 1976, but the

bin has the highest percent occurrence levels of scintillation for the

first year.

The graphs at the tops of Figures 6 and 7 give some indication of

the magnetic activity for these years. The three-hour College K magnetic

15
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index was recorded for each pass, and these values were averaged weekly.

No striking patterns of activity are obvious in these displays, but

there are more subtle patterns evident. The activity does not follow a

point-by-point correlation with the magnetic disturbance, for instance,

but there is overall agreement. As an example, in the summer months of

1976, scintillation occurred with greater frequency in the later half of

each month, and this matches peaks in magnetic activity very well. Dur-

ing the winter months, however, there are two sharp peaks in the average

College K index for which there is no attendant rise in scintillation.

Nonetheless, the overall trend in magnetic activity during this period

is downward, which matches the decline in frequency of scintillation.

Although a peak in the average local magnetic activity is most often

associated with an enhancement of scintillation, the intensity of the

magnetic disturbance need not cause a proportionate increase in the

scintillation activity. Again, in the summer months of 1976, the greatest

magnetic activity occurred during satellite passes recorded in late

August. There is an increase in the scintillation activity during this

period, but it is lower than previous peaks in June and July when mag-

netic disturbances were lower. Similar patterns are evident in the 1977-

1978 data sunmmarized in Figure 7.

It is apparent from these figures that phase and amplitude scintil-

lation track very well in this type of averaging. It is, therefore only

necessary, when comparing different data populations, to use either one

or the other. In Figures 8 and 9 the a values for night and daytime

passes for each year are compared. It is clear Lhat the second year was

much more active than the first. This is seen clearly in the total ex-

ceedance levels for each year. For night passes (Figure 8) in 1976-1977,

the I-radian level was exceeded only 21% of the time, while the same

level eas exceeded 39% in 1977-1978. Scintillation was not only more

frequent but also more intense; as an example, the 5-radian level of 7

was exceeded more the second year than was the 3-radian level during the

first year.

18
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There is no pronounced seasonal variation in the exceedence statis-

tics. The scintillation during 1976-1977 is most frequent in a broad

period around summer solstice. This is not the case in 1977-1978, when

the most active periods occurred near the spring equinox. There is

nothing in the winter of 1977 like the broad intense occurrence of

scintillation in the winter of 1978.

The daytime exceedence levels are shown in Figure 9. As discussed

in the introduction, daytime scintillation is evidently caused by dif-

ferent mechanisms than nighttime scintillation. The daytime scintilla-

tion of 1977-1978, however, is grouped in the same general periods as

the night activity, and is evidently correlated in a similar fashion with

magnetic disturbances. Unfortunately, the daytime results of 1976-1977

contain very few passes.
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IV SPATIAL AND TEMPORAL MORPHOLOGY

A. Latitudinal Distribution

To examine the latitudinal structure of the auroral-zone scintilla-

tion, S4 and a statistics were grouped into bins of magnetic dip lati-

tude 2.5' wide. The level of activity, which was exceeded by half of

the data points, was then determined for each bin. This method was used,

rather than a simple average, in searching for scintillation sources,

because the method minimizes contributions from a few very quiet or very

disturbed passes.

Figures 10 and 11 show the latitudinal distribution of the nighttime

phase and intensity scintillation respectively. The number of 20-s data

points in each bin of the histogram is included beneath the curve. The

increased activity during 1977-1978 is clearly evident in the phase data.

The most striking result, however, is the region of enhanced activity

near 640 dip latitude (L shell = 5.5). This enhancement is the most

characteristic feature of the Wideband data. It is believed Lhat the

enhancement is a geometrical effect that occurs when the propagation

vector aligns itself with irregularities which are highly elongated, not

only along the local direction of the magnetic field but also in the

plane of the local L-shell (Rino et al., 1978). The geometrical enhance-

t, nt is more pronounced in phase scintillation (Figure 10) than it is in

the scintillation intensity (Figure 11), which is in agreement with the

weok scatter theory (Rino, 1979).

The distribution of activity in these figures is asymetric about

the zenith. The sLrcngth and frequency of scintillation both grow

steadily to the iorth of the station. Behavior to the south is generally

more quiet, except for an anomalous increase in activity at the very

southern limits of the data in the first year, particularly in the in-

tensity scintillation (Figure 11). The second year does not show such
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an increase, but the latitudinal extent of this data is less than in the

first year. The difference in latitudinal coverage of the data between

the two years resulted from a change in the elevation limits for each

pass, and also from a change in the detrending process which required a

longer filter settling time.

The relatively few data points contributing to the southern enhance-

ment, plus the fact that these data are almost all from the initial months

of operation when ground effects were a recurring problem, make these,
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data somewhat suspect. Even though ground effects have been carefully

edited from the database, they may occasionally be hidden in more mode-

rate activity. It appears, nonetheless, that the source is genuine.

In striking contrast to the latitudinal distribution of the night-

time scintillarion is the smooth pattern of daytime activity (Figure 12).

The strength and frequency of the intensity scintillation of the second

year increases with dip latitude, and there is no evidence of the sheet-

like irregularities. The sheet-like irregularities have been associated

with the major nighttime particle-precipitation regions which are not

present during the day.

B. Pre-Midnight and Post-Midnight Variations
of Scintillation Activity

In Figures 13 and 14 the S4 50Z-exceedence levels of nighttime data

are divided into passes occurring before and after midnight. For the
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first year the pre-midnight data is somewhat higher than the post-

midnight; moreover, the poleward enhancement is more gradual in the

post-midnight data, suggesting that the auroral activity tends to be

closer to the station and/or more evenly distributed. This type of

activity would be expected, based on the differences in structure between

the evening and the morning visual auroral patterns.

The pre-midnight data of the second year (Figure 14) show a widening

of the region of the geometrical enhancement when compared with the 197b-

1977 pattern of the post-midnight data. As conditions were generally

more active during the second year, this behavior is indicative of more

substorm activity near the station. The pattern of generally higher

scintillation activity persists in the 1977-1978 data.
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C. Seasonal Variation of Latitudinal Structure

The histograms of nighttime intensity scintillation for each year

are divided into seasons centered around the solstices and equiinoxes

(Figures 15 and 16). In discussing the overall results in Section III,

we found no correlation of activity with the seasons. This conclusion

is verified by these figures. While activity varies considerably from

one season to the next, there is no correlation between the same seasons

of the two years. The period February through April, for example, was

the most active time of the second year (Figure 16), while the same

period was the most quiet timle of the first year.
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D. Scintillation and Magnetic-Activity Dependence
of Latitudinal Structure

To explore the relationship of scintillation to magnetic activity,

histograms of the occurrence frequency for S4 exceeding 0.3, and a0
exceeding 1.0 radian (approximately the transition from weak-to-strong

scatter regimes) were sorted according to the College three-hour K index.

The local K index was used; it was generally a better reference for

ordering the data than the planetary index.

The K values varied mostly from 0 to 7; the rare value greater than

7 was included in that grouping. Figures 17 and 18 display nighttime

S and a for the first year. The number of 20-s data points included
4

in 50 of dip latitude is shown (bins are again 2.50 wide).
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The latitudinal distribution of the nighttime scintillation data

shows evidence of both a general enhancement with increasing K as well

as equatorward migration. This is more clearly evident in the 1977-1978

data shown in Figures 19 and 20 where the southern enhancement is not

present. It should be noted that the southern enhancement is present in

the 1976-1977 data during less active (K = 1,2) conditions, which sup-

ports the hypothesis that it is associated with the plasma pause.

The occurrence of strong daytime scintillation is more highly corre-

lated with magnetic activity than in the nighttime data. This is seen

in the histograms of Figures 21 and 22 (second-year results). ThL fre-

quency of scintillation can be dramatic--e.g., when K 5, a exceeds 1

radian almost 100% of the time in the active region (Figure 22). The

daytime data also show more evidence of boundary motion with varying

activity. 28
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V GEOMETRICAL FACTORS INFLUENCING SCINTILLATION MORPHOLOGY

To model the geometrical factors that influence the latitudinal

variation of scintillation activity, we have used the phase-screen

theory developed in Rino and Matthews (1978) and Rino (1979). The

measured phase variance is given by the formula

( 5 0 2 2T fl-p (1)
p ¢2

where f is the detrend cutoff frequency (0.1 Hz), p is the power-lawC

index for the one-dimensional-phase spectral density, and

T = r2 (L sec 0) GC i ?(v) 2v-i
= (2) 2v+l Veff (2)(20 1 F(v + 1/2)of

The three-dimensional irregularity spectral density function is
(2v+l)

assumed to have the form Cqs q , where v = p12 and C is the "turbulent

strength," which is easily related to the structure constant commonly used

in characterizing turbulent fluids and plasmas. The T parameter itself is

the turbulent strength for the one-dimensional temporal-phase power

spectrum, which has the form Tf-P.

The angle b is the zenith angle and L sec 6 is the length of the

propagation path within the medium. The parameters r and Ak are the

classical electron radius and signal wavelength respecti.,ely. The main

geometrical factors are G and v e. The former accounts for the "coherent"

enhancement caused by the irregularity anisotropy. The "effective velociLy"

v t -accommodates the space-to-time coliversioln, allowing for the aspect

angle relative to the principal irregularity axis.

The anisotropy is characterized by the axial ratio along the mag-

netic field (a), and transverse to the magnetic field (b). In general,
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the orientation angle of the second irregularity axis must be specified,

but we shall consider only the sheet-like structures aligned along the

local L shell--that is, transverse to the meridian plane. For a par-

ticular satellite pass, the anisotropy and height parameters are the

principal variables. Since we have assumed a single layer; however, the

LC value must be regarded as an effective or average value.
S

The weak scatter formula for S4 corresponding to Eq. (1) is

S4 = X (L sec 0) C (Zvr1 (3)v +20.5)( - 0.5)

where
XzR sec

Z R 4, ' (4)

and J is the geometrical enhancement factor for intensity corresponding

to G. The parameter J, unlike G, depends on v and is generally more com-

plicated than G. In Eq. (4), zR is the reduced range to the satellite.

Ideally, Eqs. (2) and (3) should be applied to each individual pass

to'determine the irregularity strength, which is independent of any

purely geometrical factors. This procedure was applied to a limited

number of data sets in Rino (1979). The scheme is not without pitfalls,

however, and it is very time consuming. We have thus taken advantage

of the similarity of the high-elevation passes and compared the summary

statistics to calculations based on single passes.

In Figure 23 we show the amplitude and phase summary data for 1976-

L9)7 (sue Figures 11 and 12), together with model calculations for a

post- idnight pass. A constant C level and a 100-kin layer thickness
S

w~i- uscd. The C level was adjusted to match the phase-scintillation
S

sulniary data at approximately 600 dip latitude.

he phase-scintillation data fit the model very well through the

geoi~trical enhancement to 650 dip latitude. From that point poleward
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there is a steadily increasing departure of the data from the theoretical

curve based on a uniform perturbation level. We conclude that the

general latitudinal distribution of auroral-zone structure has a mono-

tonically increasing component beginning near the location of the midnight

auroral oval (- 650) under moderately disturbed conditions.

The corresponding theoretical S4 curve overestimates the data from

600 through the region of the geometrical enhancement, and then under-

estimates the poleward data--as do the phase-variance calculations.

Where the model overestimates the data, it is possibly because the

multiple-scatter effects are neglected. As multiple-scatter effects

are sensitive to anisotropy, saturation may well occur at lower turbu-

lence levels, for propagation angles that intercept a major irregularity

axis.

Alternatively, the discrepancy may indicate a contriL'ution due to a

source at higher altitudes. It can be seen from Eqs. (I) and (2) that

a given turbulence level produces more phase scintillation when it is

located at higher altitudes, because v increases rapidly with altitude.

A fixed phase scintillation level, alternatively, corresponds to less

turbulence at high altitudes. In Eq. (3) the increase due to Z is over-

come by the decrease in Cs, and S4 actually decreases with increasing

height if a is held constant. This is discussed in Rino (1979).

This is an attractive possibility, because there is mounting evidence

that an F-region source often contributes to the purely geometrical en-

hancement caused by sheet-like irregularities. The evidence supporting

this is from simultaneous two-station observations, and will be described

in a separate report.

To address the question of how the averaging affects the data in

Figure 24, we show the 1976-1977 data superimposed on model calculations

for a high-elevation pass. The fit is generally poorer, particularly

in the region of the geometrical enhancement. Since there are many more

lower-elevation passes in the database than higher-elevation passes,

this is not surprising. Ideally, one could weigh several geometries in
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proportion to the pass distribution for similar maximum elevation

angles, but this was not done.

The scintillation enhancement at - 500 dip latitude has been dis-

cussed. If it is genuine and not just multipath contamination, it must

be attributed to a subauroral source. Additional data have been re-

corded at Anchorage, Alaska, to study this feature, and we shall not

pursue it further here.

In Figure 25, the summary data for 1977-1978 are shown together

with model calculations of the average parameters. Here we see the

same general features as were found in the 1976-1977 data. To fit the

phase data at P 600 dip latitude, however, it was necessary to increase

loglo C from 18.2 to 18.5, which is small but significant.10s

The major difference in the two data-sets lies in the magnitude and

rate of the increase, poleward, of 650. The 1977-1978 data show a more

rapid increase that starts within the region of the geometrical enhance-

ment. This supports the hypothesis that a source region contributes to

the geometrical enhancement. It also shows than an average increasing

magnetic activity enhances the perturbation levels more than it moves

boundary regions. The two effects are, however, difficult to separate.
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